Information on Result #546932
There is no linear OA(3217, 233, F3, 144) (dual of [233, 16, 145]-code), because residual code would yield OA(373, 88, S3, 48), but
- the linear programming bound shows that M ≥ 21 779877 362252 895710 497054 495927 589540 336685 / 227 684429 > 373 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3218, 234, F3, 145) (dual of [234, 16, 146]-code) | [i] | Truncation | |
2 | No linear OA(3219, 235, F3, 146) (dual of [235, 16, 147]-code) | [i] | ||
3 | No linear OOA(3218, 233, F3, 2, 145) (dual of [(233, 2), 248, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3219, 233, F3, 2, 146) (dual of [(233, 2), 247, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3217, 233, F3, 2, 144) (dual of [(233, 2), 249, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3217, 233, F3, 3, 144) (dual of [(233, 3), 482, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3217, 233, F3, 4, 144) (dual of [(233, 4), 715, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3217, 233, F3, 5, 144) (dual of [(233, 5), 948, 145]-NRT-code) | [i] | ||
9 | No digital (73, 217, 233)-net over F3 | [i] | Extracting Embedded Orthogonal Array |