Information on Result #546942
There is no linear OA(3227, 369, F3, 144) (dual of [369, 142, 145]-code), because residual code would yield linear OA(383, 224, F3, 48) (dual of [224, 141, 49]-code), but
- the Johnson bound shows that N ≤ 18 650275 231410 181575 562142 123676 906294 083572 717553 183697 141026 684466 < 3141 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3228, 370, F3, 145) (dual of [370, 142, 146]-code) | [i] | Truncation | |
2 | No linear OA(3229, 371, F3, 146) (dual of [371, 142, 147]-code) | [i] | ||
3 | No linear OOA(3228, 369, F3, 2, 145) (dual of [(369, 2), 510, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3229, 369, F3, 2, 146) (dual of [(369, 2), 509, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3227, 369, F3, 2, 144) (dual of [(369, 2), 511, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3227, 369, F3, 3, 144) (dual of [(369, 3), 880, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3227, 369, F3, 4, 144) (dual of [(369, 4), 1249, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3227, 369, F3, 5, 144) (dual of [(369, 5), 1618, 145]-NRT-code) | [i] | ||
9 | No digital (83, 227, 369)-net over F3 | [i] | Extracting Embedded Orthogonal Array |