Information on Result #546961
There is no linear OA(3222, 238, F3, 147) (dual of [238, 16, 148]-code), because residual code would yield OA(375, 90, S3, 49), but
- the linear programming bound shows that M ≥ 7 865942 474943 247001 112000 197553 099948 432417 / 12 714325 > 375 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3223, 239, F3, 148) (dual of [239, 16, 149]-code) | [i] | Truncation | |
2 | No linear OA(3224, 240, F3, 149) (dual of [240, 16, 150]-code) | [i] | ||
3 | No linear OOA(3223, 238, F3, 2, 148) (dual of [(238, 2), 253, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3224, 238, F3, 2, 149) (dual of [(238, 2), 252, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3222, 238, F3, 2, 147) (dual of [(238, 2), 254, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3222, 238, F3, 3, 147) (dual of [(238, 3), 492, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3222, 238, F3, 4, 147) (dual of [(238, 4), 730, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3222, 238, F3, 5, 147) (dual of [(238, 5), 968, 148]-NRT-code) | [i] | ||
9 | No digital (75, 222, 238)-net over F3 | [i] | Extracting Embedded Orthogonal Array |