Information on Result #547018
There is no linear OA(3231, 247, F3, 153) (dual of [247, 16, 154]-code), because residual code would yield OA(378, 93, S3, 51), but
- the linear programming bound shows that M ≥ 2117 985825 855951 548682 979121 686352 501183 391624 / 117 447583 > 378 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3232, 248, F3, 154) (dual of [248, 16, 155]-code) | [i] | Truncation | |
2 | No linear OA(3233, 249, F3, 155) (dual of [249, 16, 156]-code) | [i] | ||
3 | No linear OOA(3232, 247, F3, 2, 154) (dual of [(247, 2), 262, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3233, 247, F3, 2, 155) (dual of [(247, 2), 261, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3231, 247, F3, 2, 153) (dual of [(247, 2), 263, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3231, 247, F3, 3, 153) (dual of [(247, 3), 510, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3231, 247, F3, 4, 153) (dual of [(247, 4), 757, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3231, 247, F3, 5, 153) (dual of [(247, 5), 1004, 154]-NRT-code) | [i] | ||
9 | No digital (78, 231, 247)-net over F3 | [i] | Extracting Embedded Orthogonal Array |