Information on Result #547019
There is no linear OA(3232, 252, F3, 153) (dual of [252, 20, 154]-code), because residual code would yield OA(379, 98, S3, 51), but
- the linear programming bound shows that M ≥ 37359 886424 244488 451760 980773 909770 698911 495751 / 677 763515 > 379 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3233, 253, F3, 154) (dual of [253, 20, 155]-code) | [i] | Truncation | |
2 | No linear OA(3234, 254, F3, 155) (dual of [254, 20, 156]-code) | [i] | ||
3 | No linear OOA(3233, 252, F3, 2, 154) (dual of [(252, 2), 271, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3234, 252, F3, 2, 155) (dual of [(252, 2), 270, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3232, 252, F3, 2, 153) (dual of [(252, 2), 272, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3232, 252, F3, 3, 153) (dual of [(252, 3), 524, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3232, 252, F3, 4, 153) (dual of [(252, 4), 776, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3232, 252, F3, 5, 153) (dual of [(252, 5), 1028, 154]-NRT-code) | [i] | ||
9 | No digital (79, 232, 252)-net over F3 | [i] | Extracting Embedded Orthogonal Array |