Information on Result #547027
There is no linear OA(3240, 384, F3, 153) (dual of [384, 144, 154]-code), because residual code would yield linear OA(387, 230, F3, 51) (dual of [230, 143, 52]-code), but
- 1 times truncation [i] would yield linear OA(386, 229, F3, 50) (dual of [229, 143, 51]-code), but
- the Johnson bound shows that N ≤ 153 153734 778487 159186 543991 832667 435898 157821 534223 513753 575995 914628 < 3143 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3241, 385, F3, 154) (dual of [385, 144, 155]-code) | [i] | Truncation | |
2 | No linear OA(3242, 386, F3, 155) (dual of [386, 144, 156]-code) | [i] | ||
3 | No linear OOA(3241, 384, F3, 2, 154) (dual of [(384, 2), 527, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3242, 384, F3, 2, 155) (dual of [(384, 2), 526, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3240, 384, F3, 2, 153) (dual of [(384, 2), 528, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3240, 384, F3, 3, 153) (dual of [(384, 3), 912, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3240, 384, F3, 4, 153) (dual of [(384, 4), 1296, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3240, 384, F3, 5, 153) (dual of [(384, 5), 1680, 154]-NRT-code) | [i] | ||
9 | No digital (87, 240, 384)-net over F3 | [i] | Extracting Embedded Orthogonal Array |