Information on Result #547050
There is no linear OA(3243, 372, F3, 156) (dual of [372, 129, 157]-code), because residual code would yield linear OA(387, 215, F3, 52) (dual of [215, 128, 53]-code), but
- the Johnson bound shows that N ≤ 11 307865 685880 246142 774871 856086 316274 707673 744713 882597 679605 < 3128 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3244, 373, F3, 157) (dual of [373, 129, 158]-code) | [i] | Truncation | |
2 | No linear OA(3245, 374, F3, 158) (dual of [374, 129, 159]-code) | [i] | ||
3 | No linear OOA(3244, 372, F3, 2, 157) (dual of [(372, 2), 500, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3245, 372, F3, 2, 158) (dual of [(372, 2), 499, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3243, 372, F3, 2, 156) (dual of [(372, 2), 501, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3243, 372, F3, 3, 156) (dual of [(372, 3), 873, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3243, 372, F3, 4, 156) (dual of [(372, 4), 1245, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3243, 372, F3, 5, 156) (dual of [(372, 5), 1617, 157]-NRT-code) | [i] | ||
9 | No digital (87, 243, 372)-net over F3 | [i] | Extracting Embedded Orthogonal Array |