Information on Result #547070
There is no linear OA(3247, 376, F3, 159) (dual of [376, 129, 160]-code), because residual code would yield linear OA(388, 216, F3, 53) (dual of [216, 128, 54]-code), but
- 1 times truncation [i] would yield linear OA(387, 215, F3, 52) (dual of [215, 128, 53]-code), but
- the Johnson bound shows that N ≤ 11 307865 685880 246142 774871 856086 316274 707673 744713 882597 679605 < 3128 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3248, 377, F3, 160) (dual of [377, 129, 161]-code) | [i] | Truncation | |
2 | No linear OA(3249, 378, F3, 161) (dual of [378, 129, 162]-code) | [i] | ||
3 | No linear OOA(3248, 376, F3, 2, 160) (dual of [(376, 2), 504, 161]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3249, 376, F3, 2, 161) (dual of [(376, 2), 503, 162]-NRT-code) | [i] | ||
5 | No linear OOA(3247, 376, F3, 2, 159) (dual of [(376, 2), 505, 160]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3247, 376, F3, 3, 159) (dual of [(376, 3), 881, 160]-NRT-code) | [i] | ||
7 | No linear OOA(3247, 376, F3, 4, 159) (dual of [(376, 4), 1257, 160]-NRT-code) | [i] | ||
8 | No linear OOA(3247, 376, F3, 5, 159) (dual of [(376, 5), 1633, 160]-NRT-code) | [i] | ||
9 | No digital (88, 247, 376)-net over F3 | [i] | Extracting Embedded Orthogonal Array |