Information on Result #547078
There is no linear OA(3246, 269, F3, 162) (dual of [269, 23, 163]-code), because residual code would yield OA(384, 106, S3, 54), but
- the linear programming bound shows that M ≥ 554636 234644 780595 906506 938993 021399 906097 624808 134107 / 34 652730 233275 > 384 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3247, 270, F3, 163) (dual of [270, 23, 164]-code) | [i] | Truncation | |
2 | No linear OA(3248, 271, F3, 164) (dual of [271, 23, 165]-code) | [i] | ||
3 | No linear OOA(3247, 269, F3, 2, 163) (dual of [(269, 2), 291, 164]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3248, 269, F3, 2, 164) (dual of [(269, 2), 290, 165]-NRT-code) | [i] | ||
5 | No linear OOA(3246, 269, F3, 2, 162) (dual of [(269, 2), 292, 163]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3246, 269, F3, 3, 162) (dual of [(269, 3), 561, 163]-NRT-code) | [i] | ||
7 | No linear OOA(3246, 269, F3, 4, 162) (dual of [(269, 4), 830, 163]-NRT-code) | [i] | ||
8 | No linear OOA(3246, 269, F3, 5, 162) (dual of [(269, 5), 1099, 163]-NRT-code) | [i] | ||
9 | No digital (84, 246, 269)-net over F3 | [i] | Extracting Embedded Orthogonal Array |