Information on Result #547080
There is no linear OA(3248, 281, F3, 162) (dual of [281, 33, 163]-code), because residual code would yield OA(386, 118, S3, 54), but
- the linear programming bound shows that M ≥ 45701 949395 937920 998380 846258 431667 611949 437892 667647 676231 147527 / 421027 592046 440957 546375 > 386 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3249, 282, F3, 163) (dual of [282, 33, 164]-code) | [i] | Truncation | |
2 | No linear OA(3250, 283, F3, 164) (dual of [283, 33, 165]-code) | [i] | ||
3 | No linear OOA(3249, 281, F3, 2, 163) (dual of [(281, 2), 313, 164]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3250, 281, F3, 2, 164) (dual of [(281, 2), 312, 165]-NRT-code) | [i] | ||
5 | No linear OOA(3248, 281, F3, 2, 162) (dual of [(281, 2), 314, 163]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3248, 281, F3, 3, 162) (dual of [(281, 3), 595, 163]-NRT-code) | [i] | ||
7 | No linear OOA(3248, 281, F3, 4, 162) (dual of [(281, 4), 876, 163]-NRT-code) | [i] | ||
8 | No linear OOA(3248, 281, F3, 5, 162) (dual of [(281, 5), 1157, 163]-NRT-code) | [i] | ||
9 | No digital (86, 248, 281)-net over F3 | [i] | Extracting Embedded Orthogonal Array |