Information on Result #547259
There is no linear OA(4198, 293, F4, 144) (dual of [293, 95, 145]-code), because residual code would yield OA(454, 148, S4, 36), but
- the linear programming bound shows that M ≥ 360 104803 308131 437253 911585 010681 444562 627305 886362 911504 773250 289965 509640 192000 / 1 033080 609162 065310 926475 587063 900861 412950 368521 > 454 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4199, 294, F4, 145) (dual of [294, 95, 146]-code) | [i] | Truncation | |
2 | No linear OA(4200, 295, F4, 146) (dual of [295, 95, 147]-code) | [i] | ||
3 | No linear OA(4201, 296, F4, 147) (dual of [296, 95, 148]-code) | [i] | ||
4 | No linear OOA(4199, 293, F4, 2, 145) (dual of [(293, 2), 387, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4200, 293, F4, 2, 146) (dual of [(293, 2), 386, 147]-NRT-code) | [i] | ||
6 | No linear OOA(4201, 293, F4, 2, 147) (dual of [(293, 2), 385, 148]-NRT-code) | [i] | ||
7 | No linear OOA(4198, 293, F4, 2, 144) (dual of [(293, 2), 388, 145]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4198, 293, F4, 3, 144) (dual of [(293, 3), 681, 145]-NRT-code) | [i] | ||
9 | No digital (54, 198, 293)-net over F4 | [i] | Extracting Embedded Orthogonal Array |