Information on Result #547293
There is no linear OA(4204, 230, F4, 152) (dual of [230, 26, 153]-code), because residual code would yield OA(452, 77, S4, 38), but
- the linear programming bound shows that M ≥ 178964 168015 271617 653478 330356 832179 607270 588416 / 8492 957066 104875 > 452 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4205, 231, F4, 153) (dual of [231, 26, 154]-code) | [i] | Truncation | |
2 | No linear OA(4206, 232, F4, 154) (dual of [232, 26, 155]-code) | [i] | ||
3 | No linear OA(4207, 233, F4, 155) (dual of [233, 26, 156]-code) | [i] | ||
4 | No linear OOA(4205, 230, F4, 2, 153) (dual of [(230, 2), 255, 154]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4206, 230, F4, 2, 154) (dual of [(230, 2), 254, 155]-NRT-code) | [i] | ||
6 | No linear OOA(4207, 230, F4, 2, 155) (dual of [(230, 2), 253, 156]-NRT-code) | [i] | ||
7 | No linear OOA(4204, 230, F4, 2, 152) (dual of [(230, 2), 256, 153]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4204, 230, F4, 3, 152) (dual of [(230, 3), 486, 153]-NRT-code) | [i] | ||
9 | No digital (52, 204, 230)-net over F4 | [i] | Extracting Embedded Orthogonal Array |