Information on Result #547498
There is no linear OA(4259, 381, F4, 188) (dual of [381, 122, 189]-code), because residual code would yield OA(471, 192, S4, 47), but
- 1 times truncation [i] would yield OA(470, 191, S4, 46), but
- the linear programming bound shows that M ≥ 30669 687295 767807 163249 547418 721993 874758 654208 012151 612633 672044 408069 277192 616104 296206 434138 576650 240000 / 20720 048409 770029 043765 568578 931955 503324 140138 849174 037831 490849 > 470 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4260, 382, F4, 189) (dual of [382, 122, 190]-code) | [i] | Truncation | |
2 | No linear OOA(4260, 381, F4, 2, 189) (dual of [(381, 2), 502, 190]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(4259, 381, F4, 2, 188) (dual of [(381, 2), 503, 189]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(4259, 381, F4, 3, 188) (dual of [(381, 3), 884, 189]-NRT-code) | [i] | ||
5 | No digital (71, 259, 381)-net over F4 | [i] | Extracting Embedded Orthogonal Array |