Information on Result #547608
There is no linear OA(8167, 268, F8, 144) (dual of [268, 101, 145]-code), because residual code would yield OA(823, 123, S8, 18), but
- the linear programming bound shows that M ≥ 1 743141 598735 488799 812535 200593 739776 / 2760 831294 791795 > 823 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(8168, 269, F8, 145) (dual of [269, 101, 146]-code) | [i] | Truncation | |
2 | No linear OA(8169, 270, F8, 146) (dual of [270, 101, 147]-code) | [i] | ||
3 | No linear OA(8170, 271, F8, 147) (dual of [271, 101, 148]-code) | [i] | ||
4 | No linear OA(8171, 272, F8, 148) (dual of [272, 101, 149]-code) | [i] | ||
5 | No linear OA(8172, 273, F8, 149) (dual of [273, 101, 150]-code) | [i] | ||
6 | No linear OA(8173, 274, F8, 150) (dual of [274, 101, 151]-code) | [i] | ||
7 | No linear OOA(8168, 268, F8, 2, 145) (dual of [(268, 2), 368, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
8 | No linear OOA(8169, 268, F8, 2, 146) (dual of [(268, 2), 367, 147]-NRT-code) | [i] | ||
9 | No linear OOA(8170, 268, F8, 2, 147) (dual of [(268, 2), 366, 148]-NRT-code) | [i] | ||
10 | No linear OOA(8171, 268, F8, 2, 148) (dual of [(268, 2), 365, 149]-NRT-code) | [i] | ||
11 | No linear OOA(8172, 268, F8, 2, 149) (dual of [(268, 2), 364, 150]-NRT-code) | [i] | ||
12 | No linear OOA(8173, 268, F8, 2, 150) (dual of [(268, 2), 363, 151]-NRT-code) | [i] | ||
13 | No linear OOA(8167, 268, F8, 2, 144) (dual of [(268, 2), 369, 145]-NRT-code) | [i] | Depth Reduction | |
14 | No linear OOA(8167, 268, F8, 3, 144) (dual of [(268, 3), 637, 145]-NRT-code) | [i] | ||
15 | No digital (23, 167, 268)-net over F8 | [i] | Extracting Embedded Orthogonal Array |