Information on Result #547679

There is no linear OA(2106, 171, F2, 48) (dual of [171, 65, 49]-code), because construction Y1 would yield
  1. OA(2105, 145, S2, 48), but
    • the linear programming bound shows that M ≥ 727 070369 678229 731686 401086 929362 121333 407744 / 17 521374 765895 > 2105 [i]
  2. OA(265, 171, S2, 26), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2107, 172, F2, 49) (dual of [172, 65, 50]-code) [i]Truncation
2No linear OOA(2107, 171, F2, 2, 49) (dual of [(171, 2), 235, 50]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(2106, 171, F2, 2, 48) (dual of [(171, 2), 236, 49]-NRT-code) [i]Depth Reduction
4No linear OOA(2106, 171, F2, 3, 48) (dual of [(171, 3), 407, 49]-NRT-code) [i]
5No linear OOA(2106, 171, F2, 4, 48) (dual of [(171, 4), 578, 49]-NRT-code) [i]
6No linear OOA(2106, 171, F2, 5, 48) (dual of [(171, 5), 749, 49]-NRT-code) [i]
7No linear OOA(2106, 171, F2, 6, 48) (dual of [(171, 6), 920, 49]-NRT-code) [i]
8No linear OOA(2106, 171, F2, 7, 48) (dual of [(171, 7), 1091, 49]-NRT-code) [i]
9No linear OOA(2106, 171, F2, 8, 48) (dual of [(171, 8), 1262, 49]-NRT-code) [i]
10No digital (58, 106, 171)-net over F2 [i]Extracting Embedded Orthogonal Array