Information on Result #547763
There is no linear OA(3117, 184, F3, 73) (dual of [184, 67, 74]-code), because construction Y1 would yield
- OA(3116, 146, S3, 73), but
- the linear programming bound shows that M ≥ 4429 247306 617760 489204 086593 334014 244245 698002 651783 020636 205319 885138 080839 / 177 060239 926994 878648 > 3116 [i]
- OA(367, 184, S3, 38), but
- discarding factors would yield OA(367, 175, S3, 38), but
- the linear programming bound shows that M ≥ 387 999317 807943 805026 164281 984581 507597 966785 079804 265116 880208 641606 720469 396519 780352 / 3 893635 890543 207464 665118 176286 227992 932894 706751 830787 > 367 [i]
- discarding factors would yield OA(367, 175, S3, 38), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3117, 184, F3, 2, 73) (dual of [(184, 2), 251, 74]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3117, 184, F3, 3, 73) (dual of [(184, 3), 435, 74]-NRT-code) | [i] | ||
3 | No linear OOA(3117, 184, F3, 4, 73) (dual of [(184, 4), 619, 74]-NRT-code) | [i] | ||
4 | No linear OOA(3117, 184, F3, 5, 73) (dual of [(184, 5), 803, 74]-NRT-code) | [i] | ||
5 | No digital (44, 117, 184)-net over F3 | [i] | Extracting Embedded Orthogonal Array |