Information on Result #547773

There is no linear OA(3129, 171, F3, 82) (dual of [171, 42, 83]-code), because construction Y1 would yield
  1. OA(3128, 149, S3, 82), but
    • the linear programming bound shows that M ≥ 33 761969 841965 313899 084622 936677 465357 394104 583425 843880 075496 568722 581771 / 1 948280 920300 > 3128 [i]
  2. OA(342, 171, S3, 22), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3129, 171, F3, 2, 82) (dual of [(171, 2), 213, 83]-NRT-code) [i]Depth Reduction
2No linear OOA(3129, 171, F3, 3, 82) (dual of [(171, 3), 384, 83]-NRT-code) [i]
3No linear OOA(3129, 171, F3, 4, 82) (dual of [(171, 4), 555, 83]-NRT-code) [i]
4No linear OOA(3129, 171, F3, 5, 82) (dual of [(171, 5), 726, 83]-NRT-code) [i]
5No digital (47, 129, 171)-net over F3 [i]Extracting Embedded Orthogonal Array