Information on Result #547786

There is no linear OA(3137, 161, F3, 89) (dual of [161, 24, 90]-code), because construction Y1 would yield
  1. OA(3136, 149, S3, 89), but
    • the linear programming bound shows that M ≥ 6 385896 362423 839893 456186 755923 270794 744764 572661 578917 513381 685836 804369 / 75 686875 > 3136 [i]
  2. OA(324, 161, S3, 12), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3138, 162, F3, 90) (dual of [162, 24, 91]-code) [i]Truncation
2No linear OOA(3138, 161, F3, 2, 90) (dual of [(161, 2), 184, 91]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(3137, 161, F3, 2, 89) (dual of [(161, 2), 185, 90]-NRT-code) [i]Depth Reduction
4No linear OOA(3137, 161, F3, 3, 89) (dual of [(161, 3), 346, 90]-NRT-code) [i]
5No linear OOA(3137, 161, F3, 4, 89) (dual of [(161, 4), 507, 90]-NRT-code) [i]
6No linear OOA(3137, 161, F3, 5, 89) (dual of [(161, 5), 668, 90]-NRT-code) [i]
7No digital (48, 137, 161)-net over F3 [i]Extracting Embedded Orthogonal Array
8No linear OA(3138, 187, F3, 89) (dual of [187, 49, 90]-code) [i]Construction Y1 (Bound)