Information on Result #547955
There is no linear OA(5121, 238, F5, 92) (dual of [238, 117, 93]-code), because construction Y1 would yield
- OA(5120, 149, S5, 92), but
- the linear programming bound shows that M ≥ 1875 115433 709844 937609 244603 657370 223629 726878 856922 329955 321895 357533 978909 714278 415776 789188 385009 765625 / 2299 458852 249280 370649 > 5120 [i]
- linear OA(5117, 238, F5, 89) (dual of [238, 121, 90]-code), but
- discarding factors / shortening the dual code would yield linear OA(5117, 226, F5, 89) (dual of [226, 109, 90]-code), but
- construction Y1 [i] would yield
- OA(5116, 143, S5, 89), but
- the linear programming bound shows that M ≥ 2738 237588 593697 454668 762256 522048 887080 570758 264064 445890 203342 535984 543104 632393 806241 452693 939208 984375 / 2 228541 507840 976583 547528 > 5116 [i]
- OA(5109, 226, S5, 83), but
- discarding factors would yield OA(5109, 147, S5, 83), but
- the linear programming bound shows that M ≥ 97832 005097 623965 961965 091455 398251 491670 818930 622769 438002 739592 061328 226246 796901 932611 945085 227489 471435 546875 / 5 803319 642355 292721 815985 390811 721467 > 5109 [i]
- discarding factors would yield OA(5109, 147, S5, 83), but
- OA(5116, 143, S5, 89), but
- construction Y1 [i] would yield
- discarding factors / shortening the dual code would yield linear OA(5117, 226, F5, 89) (dual of [226, 109, 90]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(5121, 238, F5, 2, 92) (dual of [(238, 2), 355, 93]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(5121, 238, F5, 3, 92) (dual of [(238, 3), 593, 93]-NRT-code) | [i] | ||
3 | No digital (29, 121, 238)-net over F5 | [i] | Extracting Embedded Orthogonal Array |