Information on Result #547957

There is no linear OA(5123, 218, F5, 94) (dual of [218, 95, 95]-code), because construction Y1 would yield
  1. OA(5122, 146, S5, 94), but
    • the linear programming bound shows that M ≥ 211 795989 599382 257647 285884 795458 147343 177364 572503 310245 779281 108247 094067 564830 766059 458255 767822 265625 / 9 474927 760905 821721 > 5122 [i]
  2. OA(595, 218, S5, 72), but
    • discarding factors would yield OA(595, 145, S5, 72), but
      • the linear programming bound shows that M ≥ 681 594308 011084 642541 521008 533375 736738 792368 662881 901785 086204 561152 741164 839513 298410 490771 406244 903118 931688 368320 465087 890625 / 251 826768 360176 313961 784872 463983 728554 549094 621216 187309 311959 > 595 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5123, 218, F5, 2, 94) (dual of [(218, 2), 313, 95]-NRT-code) [i]Depth Reduction
2No linear OOA(5123, 218, F5, 3, 94) (dual of [(218, 3), 531, 95]-NRT-code) [i]
3No digital (29, 123, 218)-net over F5 [i]Extracting Embedded Orthogonal Array