Information on Result #548051
There is no linear OA(2594, 164, F25, 90) (dual of [164, 70, 91]-code), because construction Y1 would yield
- OA(2593, 97, S25, 90), but
- the linear programming bound shows that M ≥ 917 366046 106511 319204 310488 250559 166131 581647 062117 601772 786429 813888 045207 279411 397468 873458 869997 872255 908077 931962 907314 300537 109375 / 81263 > 2593 [i]
- linear OA(2570, 164, F25, 67) (dual of [164, 94, 68]-code), but
- discarding factors / shortening the dual code would yield linear OA(2570, 148, F25, 67) (dual of [148, 78, 68]-code), but
- construction Y1 [i] would yield
- OA(2569, 73, S25, 67), but
- the linear programming bound shows that M ≥ 24178 564222 846123 668546 399721 917528 895562 151649 914153 732205 158997 548011 257094 913162 291049 957275 390625 / 7242 > 2569 [i]
- linear OA(2578, 148, F25, 75) (dual of [148, 70, 76]-code), but
- discarding factors / shortening the dual code would yield linear OA(2578, 103, F25, 75) (dual of [103, 25, 76]-code), but
- residual code [i] would yield OA(253, 27, S25, 3), but
- discarding factors / shortening the dual code would yield linear OA(2578, 103, F25, 75) (dual of [103, 25, 76]-code), but
- OA(2569, 73, S25, 67), but
- construction Y1 [i] would yield
- discarding factors / shortening the dual code would yield linear OA(2570, 148, F25, 67) (dual of [148, 78, 68]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2595, 165, F25, 91) (dual of [165, 70, 92]-code) | [i] | Truncation | |
2 | No linear OA(2596, 166, F25, 92) (dual of [166, 70, 93]-code) | [i] | ||
3 | No linear OA(2597, 167, F25, 93) (dual of [167, 70, 94]-code) | [i] | ||
4 | No linear OA(2598, 168, F25, 94) (dual of [168, 70, 95]-code) | [i] | ||
5 | No linear OA(2599, 169, F25, 95) (dual of [169, 70, 96]-code) | [i] | ||
6 | No linear OA(25100, 170, F25, 96) (dual of [170, 70, 97]-code) | [i] | ||
7 | No linear OA(25101, 171, F25, 97) (dual of [171, 70, 98]-code) | [i] | ||
8 | No linear OA(25102, 172, F25, 98) (dual of [172, 70, 99]-code) | [i] | ||
9 | No linear OA(25103, 173, F25, 99) (dual of [173, 70, 100]-code) | [i] | ||
10 | No linear OOA(2595, 164, F25, 2, 91) (dual of [(164, 2), 233, 92]-NRT-code) | [i] | m-Reduction for OOAs | |
11 | No linear OOA(2596, 164, F25, 2, 92) (dual of [(164, 2), 232, 93]-NRT-code) | [i] | ||
12 | No linear OOA(2597, 164, F25, 2, 93) (dual of [(164, 2), 231, 94]-NRT-code) | [i] | ||
13 | No linear OOA(2598, 164, F25, 2, 94) (dual of [(164, 2), 230, 95]-NRT-code) | [i] | ||
14 | No linear OOA(2599, 164, F25, 2, 95) (dual of [(164, 2), 229, 96]-NRT-code) | [i] | ||
15 | No linear OOA(25100, 164, F25, 2, 96) (dual of [(164, 2), 228, 97]-NRT-code) | [i] | ||
16 | No linear OOA(25101, 164, F25, 2, 97) (dual of [(164, 2), 227, 98]-NRT-code) | [i] | ||
17 | No linear OOA(25102, 164, F25, 2, 98) (dual of [(164, 2), 226, 99]-NRT-code) | [i] | ||
18 | No linear OOA(25103, 164, F25, 2, 99) (dual of [(164, 2), 225, 100]-NRT-code) | [i] | ||
19 | No linear OOA(2594, 164, F25, 2, 90) (dual of [(164, 2), 234, 91]-NRT-code) | [i] | Depth Reduction | |
20 | No digital (4, 94, 164)-net over F25 | [i] | Extracting Embedded Orthogonal Array |