Information on Result #548072
There is no linear OA(4108, 220, F4, 76) (dual of [220, 112, 77]-code), because construction Y1 would yield
- OA(4107, 141, S4, 76), but
- the linear programming bound shows that M ≥ 94 704083 303464 777353 653894 455864 731569 878383 755711 840806 960834 620243 478072 712366 905131 794432 / 3301 695418 882126 135009 765625 > 4107 [i]
- linear OA(4112, 220, F4, 79) (dual of [220, 108, 80]-code), but
- discarding factors / shortening the dual code would yield linear OA(4112, 216, F4, 79) (dual of [216, 104, 80]-code), but
- construction Y1 [i] would yield
- OA(4111, 143, S4, 79), but
- the linear programming bound shows that M ≥ 237 737030 554406 831140 331461 504711 505012 046426 036658 538250 578745 045288 416863 000860 792142 692352 / 26 111742 312416 213213 385625 > 4111 [i]
- OA(4104, 216, S4, 73), but
- discarding factors would yield OA(4104, 150, S4, 73), but
- the linear programming bound shows that M ≥ 32 028783 264027 932827 838658 827950 132017 443030 031565 779091 184319 519613 927802 631343 679332 066747 830675 439616 / 70932 376441 373736 310653 589982 582096 950125 > 4104 [i]
- discarding factors would yield OA(4104, 150, S4, 73), but
- OA(4111, 143, S4, 79), but
- construction Y1 [i] would yield
- discarding factors / shortening the dual code would yield linear OA(4112, 216, F4, 79) (dual of [216, 104, 80]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(4108, 220, F4, 2, 76) (dual of [(220, 2), 332, 77]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(4108, 220, F4, 3, 76) (dual of [(220, 3), 552, 77]-NRT-code) | [i] | ||
3 | No digital (32, 108, 220)-net over F4 | [i] | Extracting Embedded Orthogonal Array |