Information on Result #548218
There is no linear OA(344, 50, F3, 30) (dual of [50, 6, 31]-code), because “HJL†bound on codes from Brouwer’s database
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(346, 50, F3, 2, 32) (dual of [(50, 2), 54, 33]-NRT-code) | [i] | m-Reduction for OOAs | |
2 | No linear OOA(347, 50, F3, 2, 33) (dual of [(50, 2), 53, 34]-NRT-code) | [i] | ||
3 | No linear OOA(348, 50, F3, 2, 34) (dual of [(50, 2), 52, 35]-NRT-code) | [i] | ||
4 | No linear OOA(349, 50, F3, 2, 35) (dual of [(50, 2), 51, 36]-NRT-code) | [i] | ||
5 | No linear OOA(350, 50, F3, 2, 36) (dual of [(50, 2), 50, 37]-NRT-code) | [i] | ||
6 | No linear OOA(351, 50, F3, 2, 37) (dual of [(50, 2), 49, 38]-NRT-code) | [i] | ||
7 | No linear OOA(352, 50, F3, 2, 38) (dual of [(50, 2), 48, 39]-NRT-code) | [i] | ||
8 | No linear OOA(353, 50, F3, 2, 39) (dual of [(50, 2), 47, 40]-NRT-code) | [i] | ||
9 | No linear OOA(354, 50, F3, 2, 40) (dual of [(50, 2), 46, 41]-NRT-code) | [i] | ||
10 | No linear OOA(355, 50, F3, 2, 41) (dual of [(50, 2), 45, 42]-NRT-code) | [i] | ||
11 | No linear OOA(356, 50, F3, 2, 42) (dual of [(50, 2), 44, 43]-NRT-code) | [i] | ||
12 | No linear OOA(357, 50, F3, 2, 43) (dual of [(50, 2), 43, 44]-NRT-code) | [i] | ||
13 | No linear OOA(358, 50, F3, 2, 44) (dual of [(50, 2), 42, 45]-NRT-code) | [i] | ||
14 | No linear OOA(359, 50, F3, 2, 45) (dual of [(50, 2), 41, 46]-NRT-code) | [i] | ||
15 | No linear OOA(360, 50, F3, 2, 46) (dual of [(50, 2), 40, 47]-NRT-code) | [i] | ||
16 | No linear OOA(361, 50, F3, 2, 47) (dual of [(50, 2), 39, 48]-NRT-code) | [i] | ||
17 | No linear OOA(362, 50, F3, 2, 48) (dual of [(50, 2), 38, 49]-NRT-code) | [i] | ||
18 | No linear OOA(363, 50, F3, 2, 49) (dual of [(50, 2), 37, 50]-NRT-code) | [i] | ||
19 | No linear OOA(364, 50, F3, 2, 50) (dual of [(50, 2), 36, 51]-NRT-code) | [i] | ||
20 | No linear OOA(365, 50, F3, 2, 51) (dual of [(50, 2), 35, 52]-NRT-code) | [i] | ||
21 | No linear OOA(366, 50, F3, 2, 52) (dual of [(50, 2), 34, 53]-NRT-code) | [i] | ||
22 | No linear OOA(367, 50, F3, 2, 53) (dual of [(50, 2), 33, 54]-NRT-code) | [i] | ||
23 | No linear OOA(368, 50, F3, 2, 54) (dual of [(50, 2), 32, 55]-NRT-code) | [i] | ||
24 | No linear OOA(369, 50, F3, 2, 55) (dual of [(50, 2), 31, 56]-NRT-code) | [i] | ||
25 | No linear OOA(370, 50, F3, 2, 56) (dual of [(50, 2), 30, 57]-NRT-code) | [i] | ||
26 | No linear OOA(371, 50, F3, 2, 57) (dual of [(50, 2), 29, 58]-NRT-code) | [i] | ||
27 | No linear OOA(372, 50, F3, 2, 58) (dual of [(50, 2), 28, 59]-NRT-code) | [i] | ||
28 | No linear OOA(373, 50, F3, 2, 59) (dual of [(50, 2), 27, 60]-NRT-code) | [i] | ||
29 | No linear OOA(374, 50, F3, 2, 60) (dual of [(50, 2), 26, 61]-NRT-code) | [i] | ||
30 | No linear OOA(375, 50, F3, 2, 61) (dual of [(50, 2), 25, 62]-NRT-code) | [i] | ||
31 | No linear OOA(376, 50, F3, 2, 62) (dual of [(50, 2), 24, 63]-NRT-code) | [i] | ||
32 | No linear OOA(377, 50, F3, 2, 63) (dual of [(50, 2), 23, 64]-NRT-code) | [i] | ||
33 | No linear OOA(344, 50, F3, 2, 30) (dual of [(50, 2), 56, 31]-NRT-code) | [i] | Depth Reduction | |
34 | No linear OOA(344, 50, F3, 3, 30) (dual of [(50, 3), 106, 31]-NRT-code) | [i] | ||
35 | No linear OOA(344, 50, F3, 4, 30) (dual of [(50, 4), 156, 31]-NRT-code) | [i] | ||
36 | No linear OOA(344, 50, F3, 5, 30) (dual of [(50, 5), 206, 31]-NRT-code) | [i] | ||
37 | No digital (14, 44, 50)-net over F3 | [i] | Extracting Embedded Orthogonal Array | |
38 | No linear OA(345, 56, F3, 30) (dual of [56, 11, 31]-code) | [i] | Construction Y1 (Bound) |