Information on Result #548298

There is no linear OA(283, 93, F2, 42) (dual of [93, 10, 43]-code), because residual code would yield linear OA(241, 50, F2, 21) (dual of [50, 9, 22]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(284, 94, F2, 43) (dual of [94, 10, 44]-code) [i]Truncation
2No linear OOA(284, 93, F2, 2, 43) (dual of [(93, 2), 102, 44]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(286, 93, F2, 2, 45) (dual of [(93, 2), 100, 46]-NRT-code) [i]
4No linear OOA(283, 93, F2, 2, 42) (dual of [(93, 2), 103, 43]-NRT-code) [i]Depth Reduction
5No linear OOA(283, 93, F2, 3, 42) (dual of [(93, 3), 196, 43]-NRT-code) [i]
6No linear OOA(283, 93, F2, 4, 42) (dual of [(93, 4), 289, 43]-NRT-code) [i]
7No linear OOA(283, 93, F2, 5, 42) (dual of [(93, 5), 382, 43]-NRT-code) [i]
8No linear OOA(283, 93, F2, 6, 42) (dual of [(93, 6), 475, 43]-NRT-code) [i]
9No linear OOA(283, 93, F2, 7, 42) (dual of [(93, 7), 568, 43]-NRT-code) [i]
10No linear OOA(283, 93, F2, 8, 42) (dual of [(93, 8), 661, 43]-NRT-code) [i]
11No digital (41, 83, 93)-net over F2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2167, 178, F2, 84) (dual of [178, 11, 85]-code) [i]Residual Code