Information on Result #548369
There is no linear OA(2177, 191, F2, 88) (dual of [191, 14, 89]-code), because residual code would yield linear OA(289, 102, F2, 44) (dual of [102, 13, 45]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2178, 192, F2, 89) (dual of [192, 14, 90]-code) | [i] | Truncation | |
2 | No linear OOA(2178, 191, F2, 2, 89) (dual of [(191, 2), 204, 90]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2177, 191, F2, 2, 88) (dual of [(191, 2), 205, 89]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2177, 191, F2, 3, 88) (dual of [(191, 3), 396, 89]-NRT-code) | [i] | ||
5 | No linear OOA(2177, 191, F2, 4, 88) (dual of [(191, 4), 587, 89]-NRT-code) | [i] | ||
6 | No linear OOA(2177, 191, F2, 5, 88) (dual of [(191, 5), 778, 89]-NRT-code) | [i] | ||
7 | No linear OOA(2177, 191, F2, 6, 88) (dual of [(191, 6), 969, 89]-NRT-code) | [i] | ||
8 | No linear OOA(2177, 191, F2, 7, 88) (dual of [(191, 7), 1160, 89]-NRT-code) | [i] | ||
9 | No linear OOA(2177, 191, F2, 8, 88) (dual of [(191, 8), 1351, 89]-NRT-code) | [i] | ||
10 | No digital (89, 177, 191)-net over F2 | [i] | Extracting Embedded Orthogonal Array |