Information on Result #550870
There is no linear OOA(270, 72, F2, 2, 38) (dual of [(72, 2), 74, 39]-NRT-code), because 6 step m-reduction would yield linear OA(264, 72, F2, 32) (dual of [72, 8, 33]-code), but
- adding a parity check bit [i] would yield linear OA(265, 73, F2, 33) (dual of [73, 8, 34]-code), but
- “BJV†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(270, 72, F2, 3, 38) (dual of [(72, 3), 146, 39]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(270, 72, F2, 4, 38) (dual of [(72, 4), 218, 39]-NRT-code) | [i] | ||
3 | No linear OOA(270, 72, F2, 5, 38) (dual of [(72, 5), 290, 39]-NRT-code) | [i] | ||
4 | No linear OOA(270, 72, F2, 6, 38) (dual of [(72, 6), 362, 39]-NRT-code) | [i] | ||
5 | No linear OOA(270, 72, F2, 7, 38) (dual of [(72, 7), 434, 39]-NRT-code) | [i] | ||
6 | No linear OOA(270, 72, F2, 8, 38) (dual of [(72, 8), 506, 39]-NRT-code) | [i] |