Information on Result #550925
There is no linear OOA(275, 92, F2, 2, 37) (dual of [(92, 2), 109, 38]-NRT-code), because 1 step m-reduction would yield linear OA(274, 92, F2, 36) (dual of [92, 18, 37]-code), but
- adding a parity check bit [i] would yield linear OA(275, 93, F2, 37) (dual of [93, 18, 38]-code), but
- “Bro†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(275, 92, F2, 3, 37) (dual of [(92, 3), 201, 38]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(275, 92, F2, 4, 37) (dual of [(92, 4), 293, 38]-NRT-code) | [i] | ||
3 | No linear OOA(275, 92, F2, 5, 37) (dual of [(92, 5), 385, 38]-NRT-code) | [i] | ||
4 | No linear OOA(275, 92, F2, 6, 37) (dual of [(92, 6), 477, 38]-NRT-code) | [i] | ||
5 | No linear OOA(275, 92, F2, 7, 37) (dual of [(92, 7), 569, 38]-NRT-code) | [i] | ||
6 | No linear OOA(275, 92, F2, 8, 37) (dual of [(92, 8), 661, 38]-NRT-code) | [i] |