Information on Result #550940
There is no linear OOA(276, 75, F2, 2, 43) (dual of [(75, 2), 74, 44]-NRT-code), because 9 step m-reduction would yield linear OA(267, 75, F2, 34) (dual of [75, 8, 35]-code), but
- adding a parity check bit [i] would yield linear OA(268, 76, F2, 35) (dual of [76, 8, 36]-code), but
- “BJV†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(276, 75, F2, 3, 43) (dual of [(75, 3), 149, 44]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(276, 75, F2, 4, 43) (dual of [(75, 4), 224, 44]-NRT-code) | [i] | ||
3 | No linear OOA(276, 75, F2, 5, 43) (dual of [(75, 5), 299, 44]-NRT-code) | [i] | ||
4 | No linear OOA(276, 75, F2, 6, 43) (dual of [(75, 6), 374, 44]-NRT-code) | [i] | ||
5 | No linear OOA(276, 75, F2, 7, 43) (dual of [(75, 7), 449, 44]-NRT-code) | [i] | ||
6 | No linear OOA(276, 75, F2, 8, 43) (dual of [(75, 8), 524, 44]-NRT-code) | [i] |