Information on Result #550949
There is no linear OOA(277, 81, F2, 2, 41) (dual of [(81, 2), 85, 42]-NRT-code), because 1 step m-reduction would yield linear OA(276, 81, F2, 40) (dual of [81, 5, 41]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(277, 81, F2, 3, 41) (dual of [(81, 3), 166, 42]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(277, 81, F2, 4, 41) (dual of [(81, 4), 247, 42]-NRT-code) | [i] | ||
3 | No linear OOA(277, 81, F2, 5, 41) (dual of [(81, 5), 328, 42]-NRT-code) | [i] | ||
4 | No linear OOA(277, 81, F2, 6, 41) (dual of [(81, 6), 409, 42]-NRT-code) | [i] | ||
5 | No linear OOA(277, 81, F2, 7, 41) (dual of [(81, 7), 490, 42]-NRT-code) | [i] | ||
6 | No linear OOA(277, 81, F2, 8, 41) (dual of [(81, 8), 571, 42]-NRT-code) | [i] |