Information on Result #551013
There is no linear OOA(282, 81, F2, 2, 46) (dual of [(81, 2), 80, 47]-NRT-code), because 6 step m-reduction would yield linear OA(276, 81, F2, 40) (dual of [81, 5, 41]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(282, 81, F2, 3, 46) (dual of [(81, 3), 161, 47]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(282, 81, F2, 4, 46) (dual of [(81, 4), 242, 47]-NRT-code) | [i] | ||
3 | No linear OOA(282, 81, F2, 5, 46) (dual of [(81, 5), 323, 47]-NRT-code) | [i] | ||
4 | No linear OOA(282, 81, F2, 6, 46) (dual of [(81, 6), 404, 47]-NRT-code) | [i] | ||
5 | No linear OOA(282, 81, F2, 7, 46) (dual of [(81, 7), 485, 47]-NRT-code) | [i] | ||
6 | No linear OOA(282, 81, F2, 8, 46) (dual of [(81, 8), 566, 47]-NRT-code) | [i] |