Information on Result #551068

There is no linear OOA(286, 83, F2, 2, 49) (dual of [(83, 2), 80, 50]-NRT-code), because 9 step m-reduction would yield linear OA(277, 83, F2, 40) (dual of [83, 6, 41]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(286, 83, F2, 3, 49) (dual of [(83, 3), 163, 50]-NRT-code) [i]Depth Reduction
2No linear OOA(286, 83, F2, 4, 49) (dual of [(83, 4), 246, 50]-NRT-code) [i]
3No linear OOA(286, 83, F2, 5, 49) (dual of [(83, 5), 329, 50]-NRT-code) [i]
4No linear OOA(286, 83, F2, 6, 49) (dual of [(83, 6), 412, 50]-NRT-code) [i]
5No linear OOA(286, 83, F2, 7, 49) (dual of [(83, 7), 495, 50]-NRT-code) [i]