Information on Result #551080
There is no linear OOA(287, 85, F2, 2, 49) (dual of [(85, 2), 83, 50]-NRT-code), because 9 step m-reduction would yield linear OA(278, 85, F2, 40) (dual of [85, 7, 41]-code), but
- “Hel†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(287, 85, F2, 3, 49) (dual of [(85, 3), 168, 50]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(287, 85, F2, 4, 49) (dual of [(85, 4), 253, 50]-NRT-code) | [i] | ||
3 | No linear OOA(287, 85, F2, 5, 49) (dual of [(85, 5), 338, 50]-NRT-code) | [i] | ||
4 | No linear OOA(287, 85, F2, 6, 49) (dual of [(85, 6), 423, 50]-NRT-code) | [i] | ||
5 | No linear OOA(287, 85, F2, 7, 49) (dual of [(85, 7), 508, 50]-NRT-code) | [i] | ||
6 | No linear OOA(287, 85, F2, 8, 49) (dual of [(85, 8), 593, 50]-NRT-code) | [i] |