Information on Result #551156

There is no linear OOA(293, 103, F2, 2, 47) (dual of [(103, 2), 113, 48]-NRT-code), because 1 step m-reduction would yield linear OA(292, 103, F2, 46) (dual of [103, 11, 47]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(293, 103, F2, 3, 47) (dual of [(103, 3), 216, 48]-NRT-code) [i]Depth Reduction
2No linear OOA(293, 103, F2, 4, 47) (dual of [(103, 4), 319, 48]-NRT-code) [i]
3No linear OOA(293, 103, F2, 5, 47) (dual of [(103, 5), 422, 48]-NRT-code) [i]
4No linear OOA(293, 103, F2, 6, 47) (dual of [(103, 6), 525, 48]-NRT-code) [i]
5No linear OOA(293, 103, F2, 7, 47) (dual of [(103, 7), 628, 48]-NRT-code) [i]
6No linear OOA(293, 103, F2, 8, 47) (dual of [(103, 8), 731, 48]-NRT-code) [i]