Information on Result #551276
There is no linear OOA(2101, 99, F2, 2, 56) (dual of [(99, 2), 97, 57]-NRT-code), because 8 step m-reduction would yield linear OA(293, 99, F2, 48) (dual of [99, 6, 49]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2101, 99, F2, 3, 56) (dual of [(99, 3), 196, 57]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2101, 99, F2, 4, 56) (dual of [(99, 4), 295, 57]-NRT-code) | [i] | ||
3 | No linear OOA(2101, 99, F2, 5, 56) (dual of [(99, 5), 394, 57]-NRT-code) | [i] | ||
4 | No linear OOA(2101, 99, F2, 6, 56) (dual of [(99, 6), 493, 57]-NRT-code) | [i] | ||
5 | No linear OOA(2101, 99, F2, 7, 56) (dual of [(99, 7), 592, 57]-NRT-code) | [i] | ||
6 | No linear OOA(2101, 99, F2, 8, 56) (dual of [(99, 8), 691, 57]-NRT-code) | [i] |