Information on Result #551350

There is no linear OOA(2106, 112, F2, 2, 55) (dual of [(112, 2), 118, 56]-NRT-code), because 3 step m-reduction would yield linear OA(2103, 112, F2, 52) (dual of [112, 9, 53]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2106, 112, F2, 3, 55) (dual of [(112, 3), 230, 56]-NRT-code) [i]Depth Reduction
2No linear OOA(2106, 112, F2, 4, 55) (dual of [(112, 4), 342, 56]-NRT-code) [i]
3No linear OOA(2106, 112, F2, 5, 55) (dual of [(112, 5), 454, 56]-NRT-code) [i]
4No linear OOA(2106, 112, F2, 6, 55) (dual of [(112, 6), 566, 56]-NRT-code) [i]
5No linear OOA(2106, 112, F2, 7, 55) (dual of [(112, 7), 678, 56]-NRT-code) [i]
6No linear OOA(2106, 112, F2, 8, 55) (dual of [(112, 8), 790, 56]-NRT-code) [i]