Information on Result #551430

There is no linear OOA(2111, 108, F2, 2, 62) (dual of [(108, 2), 105, 63]-NRT-code), because 12 step m-reduction would yield linear OA(299, 108, F2, 50) (dual of [108, 9, 51]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2111, 108, F2, 3, 62) (dual of [(108, 3), 213, 63]-NRT-code) [i]Depth Reduction
2No linear OOA(2111, 108, F2, 4, 62) (dual of [(108, 4), 321, 63]-NRT-code) [i]
3No linear OOA(2111, 108, F2, 5, 62) (dual of [(108, 5), 429, 63]-NRT-code) [i]
4No linear OOA(2111, 108, F2, 6, 62) (dual of [(108, 6), 537, 63]-NRT-code) [i]
5No linear OOA(2111, 108, F2, 7, 62) (dual of [(108, 7), 645, 63]-NRT-code) [i]
6No linear OOA(2111, 108, F2, 8, 62) (dual of [(108, 8), 753, 63]-NRT-code) [i]