Information on Result #551598

There is no linear OOA(2122, 129, F2, 2, 63) (dual of [(129, 2), 136, 64]-NRT-code), because 3 step m-reduction would yield linear OA(2119, 129, F2, 60) (dual of [129, 10, 61]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2122, 129, F2, 3, 63) (dual of [(129, 3), 265, 64]-NRT-code) [i]Depth Reduction
2No linear OOA(2122, 129, F2, 4, 63) (dual of [(129, 4), 394, 64]-NRT-code) [i]
3No linear OOA(2122, 129, F2, 5, 63) (dual of [(129, 5), 523, 64]-NRT-code) [i]
4No linear OOA(2122, 129, F2, 6, 63) (dual of [(129, 6), 652, 64]-NRT-code) [i]
5No linear OOA(2122, 129, F2, 7, 63) (dual of [(129, 7), 781, 64]-NRT-code) [i]
6No linear OOA(2122, 129, F2, 8, 63) (dual of [(129, 8), 910, 64]-NRT-code) [i]