Information on Result #551645

There is no linear OOA(2125, 128, F2, 2, 66) (dual of [(128, 2), 131, 67]-NRT-code), because 2 step m-reduction would yield linear OA(2123, 128, F2, 64) (dual of [128, 5, 65]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2125, 128, F2, 3, 66) (dual of [(128, 3), 259, 67]-NRT-code) [i]Depth Reduction
2No linear OOA(2125, 128, F2, 4, 66) (dual of [(128, 4), 387, 67]-NRT-code) [i]
3No linear OOA(2125, 128, F2, 5, 66) (dual of [(128, 5), 515, 67]-NRT-code) [i]
4No linear OOA(2125, 128, F2, 6, 66) (dual of [(128, 6), 643, 67]-NRT-code) [i]
5No linear OOA(2125, 128, F2, 7, 66) (dual of [(128, 7), 771, 67]-NRT-code) [i]
6No linear OOA(2125, 128, F2, 8, 66) (dual of [(128, 8), 899, 67]-NRT-code) [i]