Information on Result #551647

There is no linear OOA(2125, 123, F2, 2, 69) (dual of [(123, 2), 121, 70]-NRT-code), because 13 step m-reduction would yield linear OA(2112, 123, F2, 56) (dual of [123, 11, 57]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2125, 123, F2, 3, 69) (dual of [(123, 3), 244, 70]-NRT-code) [i]Depth Reduction
2No linear OOA(2125, 123, F2, 4, 69) (dual of [(123, 4), 367, 70]-NRT-code) [i]
3No linear OOA(2125, 123, F2, 5, 69) (dual of [(123, 5), 490, 70]-NRT-code) [i]
4No linear OOA(2125, 123, F2, 6, 69) (dual of [(123, 6), 613, 70]-NRT-code) [i]
5No linear OOA(2125, 123, F2, 7, 69) (dual of [(123, 7), 736, 70]-NRT-code) [i]
6No linear OOA(2125, 123, F2, 8, 69) (dual of [(123, 8), 859, 70]-NRT-code) [i]