Information on Result #551717
There is no linear OOA(2129, 128, F2, 2, 70) (dual of [(128, 2), 127, 71]-NRT-code), because 6 step m-reduction would yield linear OA(2123, 128, F2, 64) (dual of [128, 5, 65]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2129, 128, F2, 3, 70) (dual of [(128, 3), 255, 71]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2129, 128, F2, 4, 70) (dual of [(128, 4), 383, 71]-NRT-code) | [i] | ||
3 | No linear OOA(2129, 128, F2, 5, 70) (dual of [(128, 5), 511, 71]-NRT-code) | [i] | ||
4 | No linear OOA(2129, 128, F2, 6, 70) (dual of [(128, 6), 639, 71]-NRT-code) | [i] | ||
5 | No linear OOA(2129, 128, F2, 7, 70) (dual of [(128, 7), 767, 71]-NRT-code) | [i] | ||
6 | No linear OOA(2129, 128, F2, 8, 70) (dual of [(128, 8), 895, 71]-NRT-code) | [i] |