Information on Result #551732

There is no linear OOA(2130, 141, F2, 2, 65) (dual of [(141, 2), 152, 66]-NRT-code), because 1 step m-reduction would yield linear OA(2129, 141, F2, 64) (dual of [141, 12, 65]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2130, 141, F2, 3, 65) (dual of [(141, 3), 293, 66]-NRT-code) [i]Depth Reduction
2No linear OOA(2130, 141, F2, 4, 65) (dual of [(141, 4), 434, 66]-NRT-code) [i]
3No linear OOA(2130, 141, F2, 5, 65) (dual of [(141, 5), 575, 66]-NRT-code) [i]
4No linear OOA(2130, 141, F2, 6, 65) (dual of [(141, 6), 716, 66]-NRT-code) [i]
5No linear OOA(2130, 141, F2, 7, 65) (dual of [(141, 7), 857, 66]-NRT-code) [i]
6No linear OOA(2130, 141, F2, 8, 65) (dual of [(141, 8), 998, 66]-NRT-code) [i]