Information on Result #551771

There is no linear OOA(2132, 140, F2, 2, 67) (dual of [(140, 2), 148, 68]-NRT-code), because 1 step m-reduction would yield linear OA(2131, 140, F2, 66) (dual of [140, 9, 67]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2132, 140, F2, 3, 67) (dual of [(140, 3), 288, 68]-NRT-code) [i]Depth Reduction
2No linear OOA(2132, 140, F2, 4, 67) (dual of [(140, 4), 428, 68]-NRT-code) [i]
3No linear OOA(2132, 140, F2, 5, 67) (dual of [(140, 5), 568, 68]-NRT-code) [i]
4No linear OOA(2132, 140, F2, 6, 67) (dual of [(140, 6), 708, 68]-NRT-code) [i]
5No linear OOA(2132, 140, F2, 7, 67) (dual of [(140, 7), 848, 68]-NRT-code) [i]
6No linear OOA(2132, 140, F2, 8, 67) (dual of [(140, 8), 988, 68]-NRT-code) [i]