Information on Result #551776

There is no linear OOA(2132, 130, F2, 2, 72) (dual of [(130, 2), 128, 73]-NRT-code), because 8 step m-reduction would yield linear OA(2124, 130, F2, 64) (dual of [130, 6, 65]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2132, 130, F2, 3, 72) (dual of [(130, 3), 258, 73]-NRT-code) [i]Depth Reduction
2No linear OOA(2132, 130, F2, 4, 72) (dual of [(130, 4), 388, 73]-NRT-code) [i]
3No linear OOA(2132, 130, F2, 5, 72) (dual of [(130, 5), 518, 73]-NRT-code) [i]
4No linear OOA(2132, 130, F2, 6, 72) (dual of [(130, 6), 648, 73]-NRT-code) [i]
5No linear OOA(2132, 130, F2, 7, 72) (dual of [(130, 7), 778, 73]-NRT-code) [i]
6No linear OOA(2132, 130, F2, 8, 72) (dual of [(130, 8), 908, 73]-NRT-code) [i]