Information on Result #551845
There is no linear OOA(2136, 182, F2, 2, 65) (dual of [(182, 2), 228, 66]-NRT-code), because 1 step m-reduction would yield linear OA(2135, 182, F2, 64) (dual of [182, 47, 65]-code), but
- residual code [i] would yield OA(271, 117, S2, 32), but
- the linear programming bound shows that M ≥ 436299 229870 540803 344540 378506 426337 722368 / 173 222223 038567 257555 > 271 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2136, 182, F2, 3, 65) (dual of [(182, 3), 410, 66]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2136, 182, F2, 4, 65) (dual of [(182, 4), 592, 66]-NRT-code) | [i] | ||
3 | No linear OOA(2136, 182, F2, 5, 65) (dual of [(182, 5), 774, 66]-NRT-code) | [i] | ||
4 | No linear OOA(2136, 182, F2, 6, 65) (dual of [(182, 6), 956, 66]-NRT-code) | [i] | ||
5 | No linear OOA(2136, 182, F2, 7, 65) (dual of [(182, 7), 1138, 66]-NRT-code) | [i] | ||
6 | No linear OOA(2136, 182, F2, 8, 65) (dual of [(182, 8), 1320, 66]-NRT-code) | [i] |