Information on Result #551845

There is no linear OOA(2136, 182, F2, 2, 65) (dual of [(182, 2), 228, 66]-NRT-code), because 1 step m-reduction would yield linear OA(2135, 182, F2, 64) (dual of [182, 47, 65]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2136, 182, F2, 3, 65) (dual of [(182, 3), 410, 66]-NRT-code) [i]Depth Reduction
2No linear OOA(2136, 182, F2, 4, 65) (dual of [(182, 4), 592, 66]-NRT-code) [i]
3No linear OOA(2136, 182, F2, 5, 65) (dual of [(182, 5), 774, 66]-NRT-code) [i]
4No linear OOA(2136, 182, F2, 6, 65) (dual of [(182, 6), 956, 66]-NRT-code) [i]
5No linear OOA(2136, 182, F2, 7, 65) (dual of [(182, 7), 1138, 66]-NRT-code) [i]
6No linear OOA(2136, 182, F2, 8, 65) (dual of [(182, 8), 1320, 66]-NRT-code) [i]