Information on Result #551976

There is no linear OOA(2142, 137, F2, 2, 78) (dual of [(137, 2), 132, 79]-NRT-code), because 14 step m-reduction would yield linear OA(2128, 137, F2, 64) (dual of [137, 9, 65]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2142, 137, F2, 3, 78) (dual of [(137, 3), 269, 79]-NRT-code) [i]Depth Reduction
2No linear OOA(2142, 137, F2, 4, 78) (dual of [(137, 4), 406, 79]-NRT-code) [i]
3No linear OOA(2142, 137, F2, 5, 78) (dual of [(137, 5), 543, 79]-NRT-code) [i]
4No linear OOA(2142, 137, F2, 6, 78) (dual of [(137, 6), 680, 79]-NRT-code) [i]
5No linear OOA(2142, 137, F2, 7, 78) (dual of [(137, 7), 817, 79]-NRT-code) [i]
6No linear OOA(2142, 137, F2, 8, 78) (dual of [(137, 8), 954, 79]-NRT-code) [i]