Information on Result #552086

There is no linear OOA(2147, 140, F2, 2, 82) (dual of [(140, 2), 133, 83]-NRT-code), because 16 step m-reduction would yield linear OA(2131, 140, F2, 66) (dual of [140, 9, 67]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2147, 140, F2, 3, 82) (dual of [(140, 3), 273, 83]-NRT-code) [i]Depth Reduction
2No linear OOA(2147, 140, F2, 4, 82) (dual of [(140, 4), 413, 83]-NRT-code) [i]
3No linear OOA(2147, 140, F2, 5, 82) (dual of [(140, 5), 553, 83]-NRT-code) [i]
4No linear OOA(2147, 140, F2, 6, 82) (dual of [(140, 6), 693, 83]-NRT-code) [i]
5No linear OOA(2147, 140, F2, 7, 82) (dual of [(140, 7), 833, 83]-NRT-code) [i]
6No linear OOA(2147, 140, F2, 8, 82) (dual of [(140, 8), 973, 83]-NRT-code) [i]