Information on Result #552466

There is no linear OOA(2163, 180, F2, 2, 81) (dual of [(180, 2), 197, 82]-NRT-code), because 1 step m-reduction would yield linear OA(2162, 180, F2, 80) (dual of [180, 18, 81]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2163, 180, F2, 3, 81) (dual of [(180, 3), 377, 82]-NRT-code) [i]Depth Reduction
2No linear OOA(2163, 180, F2, 4, 81) (dual of [(180, 4), 557, 82]-NRT-code) [i]
3No linear OOA(2163, 180, F2, 5, 81) (dual of [(180, 5), 737, 82]-NRT-code) [i]
4No linear OOA(2163, 180, F2, 6, 81) (dual of [(180, 6), 917, 82]-NRT-code) [i]
5No linear OOA(2163, 180, F2, 7, 81) (dual of [(180, 7), 1097, 82]-NRT-code) [i]
6No linear OOA(2163, 180, F2, 8, 81) (dual of [(180, 8), 1277, 82]-NRT-code) [i]