Information on Result #552548

There is no linear OOA(2166, 183, F2, 2, 83) (dual of [(183, 2), 200, 84]-NRT-code), because 1 step m-reduction would yield linear OA(2165, 183, F2, 82) (dual of [183, 18, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2166, 183, F2, 3, 83) (dual of [(183, 3), 383, 84]-NRT-code) [i]Depth Reduction
2No linear OOA(2166, 183, F2, 4, 83) (dual of [(183, 4), 566, 84]-NRT-code) [i]
3No linear OOA(2166, 183, F2, 5, 83) (dual of [(183, 5), 749, 84]-NRT-code) [i]
4No linear OOA(2166, 183, F2, 6, 83) (dual of [(183, 6), 932, 84]-NRT-code) [i]
5No linear OOA(2166, 183, F2, 7, 83) (dual of [(183, 7), 1115, 84]-NRT-code) [i]
6No linear OOA(2166, 183, F2, 8, 83) (dual of [(183, 8), 1298, 84]-NRT-code) [i]