Information on Result #552579
There is no linear OOA(2167, 173, F2, 2, 86) (dual of [(173, 2), 179, 87]-NRT-code), because 2 step m-reduction would yield linear OA(2165, 173, F2, 84) (dual of [173, 8, 85]-code), but
- residual code [i] would yield linear OA(281, 88, F2, 42) (dual of [88, 7, 43]-code), but
- “Hel†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2167, 173, F2, 3, 86) (dual of [(173, 3), 352, 87]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2167, 173, F2, 4, 86) (dual of [(173, 4), 525, 87]-NRT-code) | [i] | ||
3 | No linear OOA(2167, 173, F2, 5, 86) (dual of [(173, 5), 698, 87]-NRT-code) | [i] | ||
4 | No linear OOA(2167, 173, F2, 6, 86) (dual of [(173, 6), 871, 87]-NRT-code) | [i] | ||
5 | No linear OOA(2167, 173, F2, 7, 86) (dual of [(173, 7), 1044, 87]-NRT-code) | [i] | ||
6 | No linear OOA(2167, 173, F2, 8, 86) (dual of [(173, 8), 1217, 87]-NRT-code) | [i] |