Information on Result #552633

There is no linear OOA(2169, 192, F2, 2, 83) (dual of [(192, 2), 215, 84]-NRT-code), because 1 step m-reduction would yield linear OA(2168, 192, F2, 82) (dual of [192, 24, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2169, 192, F2, 3, 83) (dual of [(192, 3), 407, 84]-NRT-code) [i]Depth Reduction
2No linear OOA(2169, 192, F2, 4, 83) (dual of [(192, 4), 599, 84]-NRT-code) [i]
3No linear OOA(2169, 192, F2, 5, 83) (dual of [(192, 5), 791, 84]-NRT-code) [i]
4No linear OOA(2169, 192, F2, 6, 83) (dual of [(192, 6), 983, 84]-NRT-code) [i]
5No linear OOA(2169, 192, F2, 7, 83) (dual of [(192, 7), 1175, 84]-NRT-code) [i]
6No linear OOA(2169, 192, F2, 8, 83) (dual of [(192, 8), 1367, 84]-NRT-code) [i]